Properties

Degree 3
Conductor $ 1 $
Sign $1$
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  + (−0.421 − 1.06i)2-s + (−0.768 + 1.31i)3-s + (−0.541 − 0.167i)4-s + (−0.400 − 0.239i)5-s + (1.72 + 0.266i)6-s + (−0.117 − 0.553i)7-s + (−0.268 + 0.648i)8-s + (−0.366 − 0.703i)9-s + (−0.0872 + 0.528i)10-s + (−0.0411 + 0.100i)11-s + (0.635 − 0.582i)12-s + (−0.309 + 0.328i)13-s + (−0.541 + 0.358i)14-s + (0.622 − 0.341i)15-s + (−0.0226 − 0.546i)16-s + (0.259 + 0.620i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut &\Gamma_{\R}(s-16.4i) \, \Gamma_{\R}(s-0.171i) \, \Gamma_{\R}(s+16.5i) \, L(s,f)\cr =\mathstrut & \,\Lambda(1-s,\overline{f}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(1\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  no
Selberg data  =  $(3,\ 1,\ (-16.403124740291375i, -0.17112189172831185i, 16.574246632019687i:\ ),\ 1)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \overline{a(p)} p^{-2s} - p^{-3s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.2616362328567, −22.6875461169111, −18.3920792539766, −12.3429586556897, −7.8655276953699, −6.4222353306131, 4.6144521141879, 9.8664332915609, 11.1407921358216, 19.8646960903853, 21.6868858848525, 23.4129437373605

Graph of the $Z$-function along the critical line