Properties

Degree 3
Conductor $ 2^{2} $
Sign $1$
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  +(0.5)·2-s + (1.06 − 0.481i)3-s +(0.25)·4-s + (−0.248 + 0.0721i)5-s + (0.533 − 0.240i)6-s + (0.676 + 0.291i)7-s +(0.125)·8-s + (−0.161 − 1.50i)9-s + (−0.124 + 0.0360i)10-s + (−0.264 + 0.294i)11-s + (0.266 − 0.120i)12-s + (−0.771 + 0.00362i)13-s + (0.338 + 0.145i)14-s + (−0.230 + 0.196i)15-s +(0.0625)·16-s + (0.335 + 0.143i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut & 4 ^{s/2} \, \Gamma_{\R}(s-8.23i) \, \Gamma_{\R}(s-2.64i) \, \Gamma_{\R}(s+10.8i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,\overline{f}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(4\)    =    \(2^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  no
Selberg data  =  $(3,\ 4,\ (-8.239796i, -2.641226i, 10.881024i:\ ),\ 1)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \overline{a(p)} p^{-2s} - p^{-3s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.1266, −22.6026, −21.3171, −20.2680, −19.1905, −16.8507, −15.0792, −13.8334, −8.0717, −4.6967, −2.6576, 12.2527, 14.2232, 15.1645, 17.5728, 19.1542, 20.3333, 21.3176, 23.0757, 24.1020

Graph of the $Z$-function along the critical line