Properties

Degree 3
Conductor $ 2^{2} $
Sign $-0.5 + 0.866i$
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  + (−0.250 − 0.433i)2-s + (0.360 + 0.356i)3-s + (−0.125 + 0.216i)4-s + (−0.592 + 0.583i)5-s + (0.0642 − 0.245i)6-s + (0.103 + 1.02i)7-s +(0.125)·8-s + (−0.357 + 0.613i)9-s + (0.400 + 0.110i)10-s + (1.34 + 0.122i)11-s + (−0.122 + 0.0334i)12-s + (0.0616 − 0.416i)13-s + (0.418 − 0.301i)14-s + (−0.421 − 0.000934i)15-s + (−0.0312 − 0.0541i)16-s + (−0.855 − 0.598i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut & 4 ^{s/2} \, \Gamma_{\R}(s-8.95i) \, \Gamma_{\R}(s-2.93i) \, \Gamma_{\R}(s+11.8i) \, L(s,f)\cr =\mathstrut & (-0.5 + 0.866i)\, \Lambda(1-s,\overline{f}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(4\)    =    \(2^{2}\)
\( \varepsilon \)  =  $-0.5 + 0.866i$
primitive  :  yes
self-dual  :  no
Selberg data  =  $(3,\ 4,\ (-8.9546625172i, -2.9365915306i, 11.8912540478i:\ ),\ -0.5 + 0.866i)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \overline{a(p)} p^{-2s} - p^{-3s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.35540600, −23.85482092, −22.34994240, −20.25256015, −19.64960226, −17.69700217, −16.34014697, −14.26571491, −8.72396898, −6.85564032, −4.07774542, −0.93372346, 11.70886651, 14.40713480, 15.92737505, 17.95238412, 19.31006000, 20.29133986, 22.01745593, 22.57913504, 24.59912256

Graph of the $Z$-function along the critical line