Browse Hypergeometric Families
The table gives for each degree $d$ and weight $w$ shown,
the number of corresponding hypergeometric families.
| $w$ \ $d$ | 1 | 3 | 5 | 7 | 9 | 2 | 4 | 6 | 8 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 3 | 7 | 21 | 13 | 3 | 11 | 23 | 51 | 23 |
| 2 | 10 | 93 | 426 | 1836 | 30 | 234 | 1234 | 4475 | ||
| 4 | 47 | 414 | 2878 | 84 | 894 | 5737 | ||||
| 6 | 142 | 1263 | 204 | 1936 | ||||||
| 8 | 363 | 426 | ||||||||
| 1 | 10 | 74 | 287 | 1001 | 2197 | |||||
| 3 | 47 | 487 | 3247 | 14397 | ||||||
| 5 | 142 | 1450 | 10260 | |||||||
| 7 | 363 | 3407 | ||||||||
| 9 | 812 |
Families above are separated by type – those with odd weight and even degree are symplectic, otherwise they are orthogonal. Boxes are blank for combinations of weight and degree which cannot occur.
A random family of hypergeometric motives from the database.
A random hypergeometric motive from the database.